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INTRODUCTION 

The Jefimenko’s equations arise from an 

analogy between the laws that rules the 
electrodynamics and the laws of gravitation. 

Such analogy was proposed for the first time by 

Heaviside in a paper published [1] more than a 
century ago, where he supposed there must exist 

a second field due to moving masses and acting 

over moving masses only, called by Jefimenko, 
cogravitational field (sometimes this field is 

called Heaviside’s field). The Heaviside paper 

was forgotten for a long time until Jefimenko 

returned his work and made improvement to the 
Heaviside’s work in two books published and 

reissued since the 90’s decade [2], [3]. 

To start we need to write about the analogy 
made by Jefimenko between the laws of 

electromagnetism and the laws of gravitation. 

Oliver Heaviside proposed a system of 

equations with the same structure as the 
Maxwell’s equations, assuming the existence of 

a second field due and acting over moving 

masses only, called Heaviside’s field or co 

gravitational field and it is denoted by 𝐤, unlike 

the ordinary gravitational field 𝐠 which is due 

and acts not only on stationary masses but in 
movement. Although there are detractors of the 

Jefimenko’s theory of gravitation
1
 (see for 

example [5]), there exist books written by 

Wenceslao Segura [6] and Jolien E. D. Creighton 
[7] where they derived the Jefimenko’s equations 

from the linearized Einstein’s equations. Jefimenko 

derived the equations of gravitodynamics in a 
different way, starting from make an analogy of 

his retarded solutions of the electromagnetic 

field to the gravitodynamical field to finally get 
the analogous equations to the Maxwell’s 

equations for the gravitational and cogravitational 

fields. 

Next, we assume there is a configuration of the 
gravitodynamical field in an analogue way to 

those found in other works realized by 

Chubykalo and Espinoza [8], [9], where the 
authors have obtained the mathematical 

foundations on the Kapitsa’s hypothesis [10] 

about the origin of ball lightning related with 

interference processes. The configuration of the 
gravitodynamical field in our work begins with 

                                                             
1Called by us in a previous work gravitodynamical 

theory [4]. 
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the hypothesis that the gravitational waves exist. 

We are going to do a formal development about 
this issue based in the theoretical results 

obtained by Jefimenko. We will use the free 

gravitodynamical equations, that is, the 
equations valid for vacuum. 

It is important to emphasize that gravitational 

waves were predicted in the general theory of 

relativity by linearzing Einstein's field equations 
and this approximation is valid for weak fields. 

It is obvious that a complete theory of gravity is 

not linear but this linear approximation allows 
us to study a great variety of gravitational 

phenomena where gravitational induction is 

considered. In the same way that 
electromagnetic theory is not linear but Maxwell 

equations are applicable to a wide range of 

electromagnetic phenomena.  

Our results presented here do not try to replace 
the non-linear theories of gravitation, such as 

Einstein’s theory of general relativity [11] or 

Logunov’s relativistic theory of gravitation [12], 
but we want to show the importance of a linear 

gravitational theory, not only historical but 

methodological too, because we will show that 

exist properties of the weak fields that are not 
understood because they were not have the 

opportunity to appear in a linear theory of 

gravitation.   

THE JEFIMENKO’S EQUATIONS FOR 

GRAVITATION 

The gravitodynamical theory is a generalization 

of the Newton’s gravitation theory, since the 

Newtonian theory of gravitation describes 
perfectly phenomena of a wide range of masses, 

but it does not consider the behavior of the 

fields of moving mass distributions. This is the 
reason why it is necessary to make an extension 

of the classical Newton’s theory of gravitation.  

We can write the Newton’s theory in a way as a 

force field theory in terms of the gravitational 

field 𝐠 as 

∇ ∙ 𝐠 = −4𝜋𝛾𝜚                                                           (1) 

and 

∇ × 𝐠 = 0,                                                                   (2) 

where 𝛾 is the gravitational constant, 𝜚 is the 

mass density given by 𝜚 = 𝑑𝑚/𝑑𝑉 and  𝑑𝑚 is 

the element of mass contained in the volume 

element 𝑑𝑉. 

As we know, the gravitational field 𝐠  is defined 

by means of the force exerted by the mass 

distribution 𝜚 over a mass test 

𝐅𝘨 = 𝑚𝑡𝐠.                                                                      (3) 

In other words, the gravitational field is the 

perturbation of the space due to distribution of 

mass in some region which interact on a test 

mass 𝑚𝑡  Both masses (the mass creating the 

field and the test mass) can be moving or at rest. 

If we consider that the co gravitational field 𝐤 

exists, we need to define it in terms of the co 
gravitational force 

𝐅𝑘 = 𝑚𝑡 𝐯 × 𝐤 ,                                                          (4) 

Where 𝐅𝑘   is the force exerted by the 

cogravitational field over a test mass 𝑚𝑡  moving 

with velocity 𝐯. 

So, we can define the cogravitational field 𝐤  as 

the perturbation of the space due to a moving 

mass distribution which interacts on a moving 
test mass. 

Jefimenko started to derive their gravitational 

equations from the next expressions 

𝐠 = −𝛾   
[𝜚]

𝑟3
+

1

𝑟2𝑐
 
𝜕𝜚

𝜕𝑡
  𝐫𝑑𝑉 ′ +

𝛾

𝑐2
 

1

𝑟
 
𝜕 𝜚𝐯 

𝜕𝑡
 𝑑𝑉 ′ (5) 

and 

𝐤 = −
𝛾

𝑐2
  

[𝜚𝐯]

𝑟3
+

1

𝑟2𝑐
 
𝜕(𝜚𝐯)

𝜕𝑡
  × 𝐫𝑑𝑉 ′,                        (6) 

where 𝛾 is the gravitational constant, 𝑐 is the 

velocity of propagation of the fields
2
 and 𝐫 is the 

vector directed from the element of volume 𝑑𝑉 ′ 
(the source point) to the point where the 

gravitodynamical field is measured (the field 

point) and 𝑟 is its magnitude, the square 

brackets designate that the quantities inside 

them are evaluated in the delayed time𝑡′ = 𝑡 −
𝑟/𝑐. The integrals are evaluated over all space. 

We can see from (5) and (6) that the 
gravitodynamical fields have four causative 

sources, namely: the mass density  𝜚, the 

temporal derivative of the mass density  𝜕𝑡𝜚, the 

mass current 𝜚𝐯and its time derivative  𝜕𝑡(𝜚𝐯). 

Jefimenko obtained the gravitodynamical 

equations making use of the vector calculus and 

some vector identities. The gravitodynamical 

equations are: 

∇ ∙ 𝐠 = −4𝜋𝛾𝜚,                                                              (7) 

∇ ∙ 𝐤 = 0,                                                                         (8) 

∇ × 𝐠 = −
𝜕𝐤

𝜕𝑡
,                                                               (9) 

                                                             
2
Jefimenko assumed that the velocity of the 

propagation of the fields must be 𝑐, i.e, the finite 

speed of light. But we have demonstrated in [4] that 

this velocity must be finite or instantaneous. 
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∇ × 𝐤 −

1

𝑐2

𝜕𝐠

𝜕𝑡
= −

4𝜋𝛾

𝑐2
𝐣,                                         (10) 

where j= 𝜚𝐯  is the mass current density. It is 

evident the analogy between the Maxwell 
equations and the Jefimenko’s ones is not 

perfect: while we have only one kind of mass, 

we have two types of electric charge. While the 
electric field is directed from the positive 

charges that generate it and is directed toward 

negative charges, the gravitational field is 
always directed to the masses by which it is 

created. Another difference is that the magnetic 

field is dextrorotatory (right hand) with respect 

to the electric current through which it is 
generated, while the gravitational field is always 

levorotatory (left hand) with respect to the mass 

current through which it is generated. In spite of 
these differences, the system of equations 

obtained by Jefimenko describe correctly the 

behavior of the weak gravitational fields, as we 

have already seen they are deduced from 
different formulations in [3] and in [6], [7]. 

We define a Gaussian system of units for the 

gravitodynamical field, in order to simplify our 
calculations. We will call this system 

Gravitational Gaussian System (GGS).To do 

this we need to introduce the next rationalized 
quantities: 

Table1. Rationalized quantities in the new gravitational 

Gaussian system of units3. 

 Gravitational field Co gravitational field 

Formula 𝐆 = 𝛾−1𝐠 𝐊 = 𝛾−1𝑐𝐤 

Units  𝐆 = 𝑀𝐿−2 =Jef  𝐊 = 𝑀𝐿−2 =Jef 

If we introduce such quantities in the system of 

Equations (7)-(10) we obtain the next system of 

equations in the GGS 

∇ ∙ 𝐆 = −4𝜋𝜚,                                                             (11) 

∇ ∙ 𝐊 = 0,                                                                     (12) 

∇ × 𝐆 = −
1

𝑐

𝜕𝐊

𝜕𝑡
,                                                        (13) 

∇ × 𝐊 −
1

𝑐

𝜕𝐆

𝜕𝑡
= −

4𝜋

𝑐
𝐣.                                           (14) 

Where, 𝐣 = 𝜚𝐯is the mass current density and 

𝐯is the velocity of the mass distribution 

generating the co gravitational field. 

GRAVITATIONAL WAVES 

The Jefimenko’s theory of gravitation predicts 
also the existence of gravitational waves. We 

                                                             
3We define the unit 𝐽efimenko abbreviated 𝐽ef for the 

rationalized gravitational and co gravitational fields 

in honor of Jefimenko. 

will study the properties of such waves, in this 

and in other sections (especially in the section 
V, where we will study the energy and the 

Poynting vector of such waves).  

We will obtain in this section the wave equation 
for both fields, namely, the gravitational field 

and the cogravitational one, making direct 

calculations on the system of equations (11)-
(14), we will see that these equations lead us to 

the wave equation. We start calculating the curl 

on the equation (13) 

    ∇ × ∇ × 𝐆 = −
1

𝑐

𝜕

𝜕𝑡
∇ × 𝐊,                                  (15) 

and substituting in equation (14) and using the 
identity for a Laplacian of a vector,  

∇ × ∇ × 𝐕 = 𝛁 𝛁 ∙ 𝐕 − ∆𝐕,                                   (16) 

for any arbitrary vector 𝐕, and where ∆= ∇2is 

the Laplacian operator, we get 

∆𝐆 −
1

𝑐2

𝜕2𝐆

𝜕𝑡2
= −4𝜋  ∇𝜚 +

1

𝑐2

𝜕𝐣

𝜕𝑡
 ,                       (17) 

the in homogeneous gravitational wave 

equation. 

In a similar way, starting from (14) taking the 

curl and using the identity (16), we get 

∆𝐊 −
1

𝑐2

𝜕2𝐊

𝜕𝑡2
=

4𝜋

𝑐
∇ × 𝐣,                                          (18) 

Is the inhomogeneous cogravitational wave 

equation. Both expressions (17) and (18) are 

field waves propagating on the space with a 

velocity 𝑐. 

If we consider regions without masses 

distributions and current masses we obtain the 

homogeneous wave equations, namely, 

∆𝐆 −
1

𝑐2

𝜕2𝐆

𝜕𝑡2
= 0                                                        (19) 

And 

∆𝐊 −
1

𝑐2

𝜕2𝐊

𝜕𝑡2
= 0.                                                       (20) 

The equations obtained (19) and (20) can be 

solved by a sum of two vector functions, 𝝋1 

and  𝝋2, 

𝝋1 𝒌 ∙ 𝐫 − 𝜔𝑡 + 𝝋2 𝒌 ∙ 𝐫 + 𝜔𝑡 ,                        (21) 

Where 𝒌 = (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) is the wave vector
4
, 𝝋1 

and 𝝋2 are general expressions which represent 

plane waves propagating with velocity 𝑐 in 

                                                             
4 To avoid confusions, we use italic boldface 𝒌 to 

represent the wave vector and normal boldface 𝐤 to 

represent the cogravitational field. 
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opposite directions. Then the solution (21) for 

the wave equation can be derived from the 
method of separation of variables. If we 

introduce the harmonic dependence given by 

𝐆 = 𝐺0𝑒𝑖 𝒌∙𝐫±𝜔𝑡  𝒏𝐆                                                     (22) 

and 

K = 𝐾0𝑒𝑖 𝒌∙𝐫±𝜔𝑡  𝒏𝐊,                                                   (23) 

Where 𝒏𝐆 is a unitary vector in the direction of 

propagation of 𝐆  and 𝒏𝐊 is in the direction of 

propagation of 𝐊, the wave’s equation results in 

the dispersion’s relation 

𝜔2 − 𝑘2𝑐2 = 0.                                                           (24) 

For the election of sign  𝑘 = + 𝜔 𝑐 , we obtain 

from the Jefimenko’s equations for 
gravitodynamical fields 

𝒌 ∙ 𝒏𝐆 = 0 and  𝙜 ∙ 𝒏𝐊 = 0,                                      (25) 

 𝒌 × 𝒏𝐆 𝐺0 =
𝜔

𝑐
𝐾0𝒏𝐊  and   𝒌 × 𝒏𝐊 𝐾0

=
𝜔

𝑐
𝐺0𝒏𝐆.                                    (26) 

From Eq s. (25) And (26) we can see that  𝐆 and 

𝐊 are vector mutually perpendicular to the 

direction of propagation and 𝐺0 =  𝐾0 . 

An Interesting Wave Solution of the 

Jefimenko’s Equations for the Free Space 

The prediction of gravitational waves by means 

of the Jefimenko’s gravitodynamical theory let 

us search a various types of solutions for the 

gravitodynamical field in vacuum. For example, 

as we will show in this section, solutions exist 

that have a set of interesting properties. These 

solutions have the form of spheres of co 

gravitational field and ring-like gravitational 

field, in such way the total configuration of the 

gravitodynamical field oscillates. In such 

spheres the Heaviside’s field is tangent in all 

points over the surface of this sphere, and the 

same for the ring-like configuration of the 

gravitational field. 

We will begin this section rewriting the 

Jefimenko’s equations for the gravitation, 
assuming there are regions of free space or 

vacuum, this means, 𝜚 = 0 and 𝐣 = 0. We get 

∇ ∙ 𝐆 = 0,                                                                      (27) 

∇ ∙ 𝐊 = 0,                                                                      (28) 

∇ × 𝐆 = −
1

𝑐

𝜕𝐊

𝜕𝑡
,                                                         (29) 

∇ × 𝐊 =
1

𝑐

𝜕𝐆

𝜕𝑡
.                                                             (30) 

In Electrodynamics is usual to refer to standard 
polarity in the solutions of the Maxwell 

equations when the electric field 𝐄 is a polar 

vector and the magnetic induction B is an axial 

vector, or pseudo-vector. This means that after a 
transformation of inversion of axis coordinates, 

𝐄  changes its signs, while B maintains its signs. 

Following the analogy between both theories we 
are going to look for solutions to these equations 

with standard polarity, to wit, when the vector 

𝐆 is polarand 𝐊 is axial. We propose to solve the 

system of free Jefimenko’s equations by the 
method of separation of variables, we can write 

𝐆 and 𝐊 as follows: 

𝐆 𝐫, 𝑡 = 𝛄 𝐫 𝜇 𝑡                                                   (31) 

and 

𝐊 𝐫, 𝑡 = 𝛋 𝐫 𝜈 𝑡 ,                                                 (32) 

where 𝛄 𝐫    is a polar vector and 𝛋 𝐫  is an 

axial one, also  𝜇 𝑡  and 𝜈 𝑡  are functions of 

time. 

Substituting (31) and (32) in the system (27)-

(30) 

∇ ∙ 𝛄 𝐫 = 0,                                                                (33) 

∇ ∙ 𝛋 𝐫 = 0,                                                                (34) 

∇ × 𝛄 𝐫 = −
1

𝑐

1

𝜇 𝑡 

𝜕𝜈 𝑡 

𝜕𝑡
𝛋 𝐫 ,                                      (35) 

∇ × 𝛋 𝐫 =
1

𝑐

1

𝜈 𝑡 

𝜕𝜇 𝑡 

𝜕𝑡
𝛄 𝐫 .                                (36) 

We can equate the temporal parts of both 

equations to certain constants to obtain a 
consistent system,  

−
1

𝜇 𝑡 

𝜕𝜈 𝑡 

𝜕𝑡
= 𝜔1                                                      (37) 

And 

1

𝜈 𝑡 

𝜕𝜇 𝑡 

𝜕𝑡
= 𝜔2 .                                                        (38) 

We are going to equating both equations to 𝜔, in 

order to obtain sinusoidal solutions and get only 
three constants in our system (37)-(38) 

𝜈 𝑡 = 𝐴 cos 𝜔𝑡 − 𝛿                                                (39) 

and 

𝜇 𝑡 = 𝐴 sin 𝜔𝑡 − 𝛿 ,                                               (40) 

where, 𝐴 and 𝛿 are arbitrary constants. 
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Thus, in this way, the equations for 𝛄 and 

𝛋 become 

∇ × 𝛄 𝐫 =
𝜔

𝑐
𝛋 𝐫 ,                                                    (41) 

and 

∇ × 𝛋 𝐫 =
𝜔

𝑐
𝛄 𝐫 .                                                    (42) 

Due to the linearity of the spatial components of 

the fields, we can add (41) and (42), then, we 

can define the vector 

𝛔 𝐫 = 𝛄 𝐫 +  𝛋 𝐫 ,                                                 (43) 

Such as, we obtain 

∇ × 𝛔 𝐫 =
𝜔

𝑐
𝛔 𝐫 .                                                    (44) 

First of all, we are going to solve (44), then, 

once we have obtained 𝛔, we can calculate 

𝛄 and 𝛋. We need to note that vector 𝛔  has not 

polarity, but we can express its polar and axial 

parts as 

𝛄 𝐫 =
1

2
 𝛔 𝐫 − 𝛔 −𝐫                                         (45) 

And  

𝛋 𝐫 =
1

2
 𝛔 𝐫 + 𝛔 −𝐫  .                                     (46) 

Taking the curl of (45) and (46), and inverting 
the coordinates of equation (44), we have 

∇ × 𝛄 𝐫 =
1

2
 ∇ × 𝛔 𝐫 − ∇ × 𝛔 −𝐫  

=
1

2
 
𝜔

𝑐
𝛔 𝐫 +

𝜔

𝑐
𝛔 −𝐫  

=
𝜔

𝑐
𝛋 𝐫                                                                         (47) 

And 

∇ × 𝛋 𝐫 =
1

2
 ∇ × 𝛔 𝐫 + ∇ × 𝛔 −𝐫  =

1

2
 
𝜔

𝑐
𝛔 𝐫 −

𝜔

𝑐
𝛔 −𝐫  =

𝜔

𝑐
𝛄 𝐫 ,                  (48) 

we can be sure that the system is satisfied. The 
only thing we need to do is to find the solution 

of (44), in order to find the solution of the 

system (41)-(42). To get such solution we will 

consider the vector 𝛔  in spherical coordinates 

and we suppose that the solution has axial 

symmetry 

𝛔 = 𝜎𝒓 𝑟, 𝜃 𝒓 + 𝜎𝜃 𝑟, 𝜃 𝜽 + 𝜎𝜙 𝑟, 𝜃 𝝋 .    (49) 

The curl of 𝛔  in spherical coordinates is 

∇ × 𝛔 =
1

𝑟2 sin𝜃
 
𝜕 𝑟𝜎𝜙 sin 𝜃 

𝜕𝜃
−

𝜕 𝑟𝜎𝜃  

𝜕𝜙
 𝒓 +

1

𝑟 sin𝜃
 
𝜕 𝜎𝑟 

𝜕𝜙
−

𝜕 𝑟𝜎𝜙 sin 𝜃 

𝜕𝑟
 𝜽 +

1

𝑟
 
𝜕 𝑟𝜎𝜃  

𝜕𝑟
−

𝜕 𝜎𝑟 

𝜕𝜃
 𝝋 ,                   (50) 

We can obtain the next system of equations 
taking into account Eq. (44) and comparing it 

with (49) and (50) 

𝜕 𝜎𝜙 sin 𝜃 

𝜕𝜃
=

𝜔𝑟𝜎𝑟 sin 𝜃

𝑐
,                                        51  

𝜕(𝑟𝜎𝜙 )

𝜕𝑟
= −

𝜔𝑟𝜎𝜃

𝑐
                                                     (52) 

and  

𝜕 𝑟𝜎𝜃 

𝜕𝑟
−

𝜕 𝜎𝑟 

𝜕𝜃
=

𝜔𝑟𝜎𝜙

𝑐
.                                        (53) 

Expressing the variables 𝜎𝑟y  𝜎𝜃 from (51) y (52) 

and replacing them in (53), we obtain the next 

partial differential equation for  𝜎𝜙 , namely, 

𝑟
𝜕2

𝜕𝑟2
 𝑟𝜎𝜙  +

𝜕

𝜕𝜃
 

1

sin 𝜃

𝜕

𝜕𝜃
 𝜎𝜙 sin𝜃  +

𝜔2𝑟2

𝑐2
𝜎𝜙

= 0.                                                      (54) 

If we propose 𝜎𝜙 = 𝑅(𝑟)Θ(𝜃) as a solution for 

(54) we find that 𝑅 and Θ have to satisfy 

𝑟2
𝑑2(𝑟𝑅)

𝑑𝑟2
+  

𝜔2𝑟2

𝑐2
+ 𝜆 𝑟𝑅 = 0                           (55) 

And 

𝑑

𝑑𝜃
 

1

sin 𝜃

𝑑

𝑑𝜃
 Θ sin 𝜃  − 𝜆Θ = 0,                         (56) 

where  𝜆 is an arbitrary constant? If  𝜆 = 0, then 

the solution for 𝑟𝑅 in Equation (55) must be 

𝐴 cos
𝜔𝑟

𝑐
+ 𝐵 sin

𝜔𝑟

𝑐
, where 𝐴 and 𝐵 are 

constants, but, in general, 𝐴 and 𝐵 depend on 𝑟, 
so 

𝑟𝑅 = 𝐴 𝑟 cos
𝜔𝑟

𝑐
+ 𝐵 𝑟 sin

𝜔𝑟

𝑐
.                          (57) 

Now, we are going to substitute (57) in (55) and 
we obtain the next two equations 

𝑑2𝐴

𝑑𝑟2
+

𝜆

𝑟2
𝐴 +

2𝜔

𝑐

𝑑𝐵

𝑑𝑟
= 0                                         (58) 

And 

𝑑2𝐵

𝑑𝑟2
+

𝜆

𝑟2
𝐵 −

2𝜔

𝑐

𝑑𝐴

𝑑𝑟
= 0,                                        (59) 

Considering the fact that the coefficients of sine 

and cosine must be zero separately, due these 
functions has the same argument. 

To solve (58) and (59) we propose 𝐴 𝑟 = 𝑎𝑟𝑚  

and𝐵 𝑟 = 𝑏𝑟𝑛 , where the coefficients 𝑎 and 𝑏 

are constants and 𝑛, 𝑚 ∈ 𝑁 are constants, too. 
Then, we obtain the following characteristic 

equations, substituting the solutions proposed in 

Eqs. (58) and (59) 
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𝑎𝑚 𝑚 − 1 + 𝜆𝑎 +
2𝜔

𝑐
𝑏𝑛𝑟𝑛−𝑚+1 = 0                (60) 

and 

𝑏𝑛 𝑛 − 1 + 𝜆𝑏 −
2𝜔

𝑐
𝑎𝑚𝑟𝑚−𝑛+1 = 0.                (61) 

Both equations can be satisfied for the next two 
cases: 

Case1) 𝑚 = 0, 𝑛 = −1, 𝜆 = −2 and 𝑎 =
−𝜔𝑏/𝑐, and regarding Eq. (57) for 𝑏 = 1, we 
obtain 

𝑅 =
1

𝑟2
 −

𝜔𝑟

𝑐
cos

𝜔𝑟

𝑐
+ sin

𝜔𝑟

𝑐
 ;                          (62) 

Case2)𝑚 = −1, 𝑛 = 0, 𝜆 = −2 and 𝑏 = −𝜔𝑎/
𝑐, and regarding Eq. (57) for 𝑎 = 1, we obtain, 

𝑅 =
1

𝑟2
 cos

𝜔𝑟

𝑐
+

𝜔𝑟

𝑐
sin

𝜔𝑟

𝑐
 .                               (63) 

Then, from the solutions (62) and (63) we have 

the general solution for Eq. (55) 

𝑅 𝑟 =
𝐶1

𝑟2
 −

𝜔𝑟

𝑐
cos

𝜔𝑟

𝑐
+ sin

𝜔𝑟

𝑐
 

+
𝐶2

𝑟2
 cos

𝜔𝑟

𝑐
+

𝜔𝑟

𝑐
sin

𝜔𝑟

𝑐
 ,   (64) 

Where 𝐶1  and 𝐶2  are arbitrary constants. This 

general solution can be expressed as 

𝑅 𝑟 =
𝐶

𝑟2
 cos  

𝜔𝑟

𝑐
− 𝛼 + sin 

𝜔𝑟

𝑐
− 𝛼  ,       (65) 

Where 𝐶 and 𝛼 are arbitrary constants. 

Now, we considering the Eq. (56), which for 
𝜆 = −2  become: 

𝑑

𝑑𝜃
 

1

sin 𝜃

𝑑

𝑑𝜃
 Θ sin 𝜃  + 2Θ = 0.                         (66) 

This equation has the general solution: 

Θ 𝜃 = 𝐶3 sin𝜃 + 𝐶4 cot𝜃
− sin 𝜃 ln csc 𝜃 − cot 𝜃          (67) 

Where  𝐶3  and 𝐶4  are arbitrary constants too. 

Due to in 𝜃 = (2𝑛 + 1)𝜋 the corresponding 

solution has a singularity, we can make  𝐶4 = 0. 

Also, due to the homogeneity of the equation for 

the vector  𝛔, we can make  𝐶3 = 1. 

In this way, we can write the solution of the Eq. 

(54) as follows 

𝜎𝜙 (𝑟, 𝜃) =
1

𝑟2
 cos  

𝜔𝑟

𝑐
− 𝛼 +

𝜔𝑟

𝑐
sin  

𝜔𝑟

𝑐
− 𝛼  sin 𝜃.         (68) 

We can use the system (51)-(53) to find 𝜎𝑟(𝑟, 𝜃) 

and𝜎𝜃 (𝑟, 𝜃), namely 

𝜎𝑟 𝑟, 𝜃 =
2𝑐

𝜔𝑟3
 cos  

𝜔𝑟

𝑐
− 𝛼 +

𝜔𝑟

𝑐
sin  

𝜔𝑟

𝑐
− 𝛼  cos 𝜃       (69) 

and 

𝜎𝜃 𝑟, 𝜃 =
𝑐

𝜔𝑟3
 cos  

𝜔𝑟

𝑐
− 𝛼 +

𝜔𝑟

𝑐
sin 

𝜔𝑟

𝑐
− 𝛼 −

𝜔2𝑟2

𝑐2
cos  

𝜔𝑟

𝑐
− 𝛼  sin 𝜃.                                              (70) 

In order to write the solutions in a short way, we 

define 

𝜁 = cos  
𝜔𝑟

𝑐
− 𝛼 +

𝜔𝑟

𝑐
sin  

𝜔𝑟

𝑐
− 𝛼  

and 

𝜂 = 𝜁 −
𝜔2𝑟2

𝑐2
cos  

𝜔𝑟

𝑐
− 𝛼 , 

such as we can write the solution of Eq. (44) in 

spherical coordinates as 

𝛔 = 𝜉  
2𝜁

𝑟3
cos 𝜃 𝒓 + 𝜉  

𝜂

𝑟3
sin𝜃 𝜽 

+ 𝜉  
𝜔𝜁

𝑐𝑟2
sin 𝜃 𝝋 .                             (71) 

Where we have multiplied by 𝜉𝜔/𝑐 for 

convenience, and𝜉 has dimensions  𝜉 = 𝑔 𝑐𝑚. 

In this way, we can see that the component in 

𝝋    direction corresponds to the vector 𝛄 and the 

components in 𝒓  and 𝜽  directions correspond to 

the vector 𝛋. That is, 

𝛄 = 𝜉  
𝜔𝜁

𝑐𝑟2
sin𝜃 𝝋                                                    (72) 

and 

𝛋 = 𝜉  
2𝜁

𝑟3
cos 𝜃 𝒓 + 𝜉  

𝜂

𝑟3
sin 𝜃 𝜽 .                      (73) 

Finally, we write the solution for the 

gravitational and co gravitational fields as 

follows 

𝐆 = 𝜉   
𝜔𝜁

𝑐𝑟2
sin 𝜃 𝝋  sin 𝜔𝑡 − 𝛿                                   (74) 

and      

𝐊 =  𝜉  
2𝜁

𝑟3
cos 𝜃 𝒓 + 𝜉  

𝜂

𝑟3
sin 𝜃 𝜽  cos 𝜔𝑡 − 𝛿 ,    (75) 

where we have bear in mind temporal solutions 
(39), (40) and the spatial solutions (72), (73). 

The necessary condition so that solutions (74) 

and (75) do not diverge in 𝑟 = 0 is,  

𝜁 0 =   cos  
𝜔𝑟

𝑐
− 𝛼 +

𝜔𝑟

𝑐
sin 

𝜔𝑟

𝑐
− 𝛼   

𝑟=0
= 0, 

to fulfill such condition we need cos 𝛼 = 0, this 

implies 𝛼 =  𝑛 + 1 2  𝜋, where 𝑛 =
0, ±1, ±2, … 

Now, we calculate the next limits to ensure that 

the solutions converge, 
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lim
𝑟→0

𝜁

𝑟2
= 0;    lim

𝑟→0

𝜁

𝑟3
=

𝜔3

3𝑐3
and    lim

𝑟→0

𝜂

𝑟3
= −

2𝜔3

3𝑐3
, 

these limits are evaluated for 𝛼 = 𝜋 2 , also 𝜁 

and 𝜂 were expanded in power series of  𝑟. 

we have the energy density defined
5
 as 

𝑤 = −
1

8𝜋
 𝐺2 + 𝐾2 ,                                                           (76) 

so, we obtain the limits 

lim
𝑟→0

𝐆 = 0;    lim
r→0

𝐊 =
   2𝜉𝜔3

3𝑐3
cos 𝜔𝑡 𝒛 ;     lim

𝑟→0
𝑤

=
𝜉2𝜔6

18𝜋𝑐6
cos2𝜔𝑡 ,                              (77) 

𝒛  is the unit vector in the direction 𝑍 + of the 
Cartesian system. 

We propose 𝛼 = 𝜋 2  and 𝛿 = 0, because 𝛿 

defines the initial wave phase of the fields 𝐆 and 

𝐊, we can write convergent solutions for these 
fields: 

𝐆 =  𝜉  
𝜔𝜁

𝑐𝑟2
sin 𝜃 𝝋  sin𝜔𝑡                                              (78) 

and 

𝐊 =  𝜉  
2𝜁

𝑟3
cos 𝜃 𝒓 + 𝜉  

𝜂

𝑟3
sin 𝜃 𝜽  cos𝜔𝑡,                (79) 

where 

𝜁 = −
𝜔𝑟

𝑐
cos  

𝜔𝑟

𝑐
 + sin  

𝜔𝑟

𝑐
   and  𝜂 = 𝜁 −

𝜔2𝑟2

𝑐2 sin  
𝜔𝑟

𝑐
 . 

We can conclude that the solutions (78) and (79) 

for the Jefimenko’s gravitational equations for 

the free space involve the novel existence of 
spherical formations of the gravitodynamical 

field. 

Analysis of the Energy and the Energy Flow 

of the Gravitodynamical Field 

The expression of energy density given by Eq. 

(76) can be changed after some algebraic 

manipulations in another that contains a part 
time-dependent and an independent one, 

namely: 

𝑤 = −
𝜉2

16𝜋
 
𝜔2𝜁2

𝑐2𝑟4
sin2𝜃 +  

4𝜁2

𝑟6
cos2𝜃 +

𝜂2

𝑟6
sin2𝜃   

−
𝜉2

16𝜋
  

4𝜁2

𝑟6
cos2𝜃 +

𝜂2

𝑟6
sin2𝜃 

−
𝜔2𝜁2

𝑐2𝑟4
sin2𝜃  cos 2𝜔𝑡 .                                                 (80) 

                                                             
5
See, page 303 of Gravitation and Co gravitation [3] 

by Jefimenko. But in our case we use GGS units.  

From this expression we find the geometric 

places where the energy density do not depend 

on time 𝑡. Those geometric places are 

The points along the Z axis where is satisfied 

tan  
𝜔𝑧

𝑐
 =

𝜔𝑧

𝑐
, 

where 𝜃 = 0, 𝜋 and  𝜁 = 0. 

The surfaces where 𝑟 satisfies  

𝜂2 = 𝜁2  
𝜔2𝑟2

𝑐2
− 4 cot2𝜃 . 

The cross-section of such surfaces is drawn as 

discontinuous curves in the Fig. 3. 

Now, we are going to obtain the 

gravitodynamical energy 𝐸𝐺 inside a sphere of 

radius 𝑅 centered at the origin, by means of 

𝐸𝑇𝐺 =    𝑤 𝑟, 𝜃, 𝜙, 𝑡 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙 =

2𝜋

0

𝜋

0

𝑅

0

𝐸𝐺 𝑅 

+ 𝐸𝐺 𝑅, 𝑡 ,                                          (81) 

where 

𝐸𝐺 𝑅 = −
𝜉2

6𝑅3
 
𝜔4𝑅4

𝑐4
−

𝜔2𝑅2

𝑐2
sin2  

𝜔𝑅

𝑐
 − 𝜁2 ,       (82) 

and 

𝐸𝐺 𝑅, 𝑡 =
𝜉2

6𝑅3
𝜁𝜂 cos 2𝜔𝑡.                                                (83) 

In this case, 

𝜁 = −
𝜔𝑅

𝑐
cos  

𝜔𝑅

𝑐
 + sin  

𝜔𝑅

𝑐
 And𝜂 = 𝜁 −

𝜔 2𝑅2

𝑐2 sin  
𝜔𝑅

𝑐
 . 

We can see from Eq. (83) that gravitodynamical 
energy does not change in time within spheres 

of radiuses 𝑅 which are solutions of the next 

equations obtained respectively making  𝜁 = 0 

and 𝜂 = 0 

tan 
𝜔𝑅

𝑐
 =

𝜔𝑅

𝑐
                                                                   (84) 

and 

tan 
𝜔𝑅

𝑐
 =

𝜔𝑅

𝑐

1−
𝜔2𝑅2

𝑐2

.                                                             (85) 

The surfaces whose radii satisfy Eq. (84) 

contains only co gravitational field, there is not 

gravitational field over those surfaces, as we can 

verify from Eqs. (78) And (79) taking  𝜁 = 0. 

Now, we analyze the energy flow contained in 

the wave field given by (78) and (79). 

As a first step we are going to calculate the 
Poynting’s vector in GGSunits  
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𝐒 =
𝑐

4𝜋
𝐊 × 𝐆

=
𝜉2

8𝜋
 
𝜔𝜁𝜂 sin2𝜃

𝑟5
𝒓 

−
𝜔𝜁2 sin(2𝜃)

𝑟5
𝜽  sin 2𝜔𝑡 .                                               (86) 

Now, we will calculate the total momentum of 

the gravitodynamical field within a sphere of 

radius 𝑟 centered at the origin. We will do this 

making use of the fact that the Poynting vector 

is proportional to the vector of the density of 
momentum, so that we can calculate the integral 

of the Poynting vector over the volume of the 

sphere of radius  𝑟. To make this easier we will 

express the unit vectors in spherical coordinates 
system in a Cartesian one, namely 

𝒓 = sin𝜃 cos 𝜙𝒙 + sin 𝜃 sin𝜙 𝒚 + cos 𝜃 𝒛  And 𝜽 =
cos 𝜃 cos 𝜙𝒙  + cos 𝜃 sin 𝜙 𝒚 − sin 𝜃 𝒛  

Integrating Eq. (81) over the given volume we 

obtain: 

 𝐒𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙

=
𝜉2𝜔 sin(2𝜔𝑡)

8
  𝜁

2

𝑟3
sin4𝜃 

0

𝜋

𝑑𝑟𝒛 

= 0.                                                (87) 

We can interpret this result as follows. The total 
momentum of the gravitodynamical field (78)-

(79) in a volume bounded by an arbitrary sphere 

centered at the origin is null at any time given. 

We will obtain the geometric places where the 

Poynting vector is zero at any instant. To do 

this, we need the conditions when the Poynting 

vector is zero and this is obtained by means of 
Eq. (76),  

𝜁2 sin 2𝜃 = 0  and  𝜁𝜂 sin2𝜃 = 0.                           (88) 

From the first equation of (88) we have 

𝜁 = 0, which satisfies both equations (88). We 

obtain the equation 

tan 
𝜔𝑟

𝑐
 =

𝜔𝑟

𝑐
.                                                                      (89) 

Accordingly, the geometric places for the case 

(1) are spheres whose radiuses satisfy Eq. (89). 

sin 2𝜃 = 0. Which means that 𝜃 can be 0, 𝜋 2  

or𝜋. 

 𝜃 = 0, 𝜋, In this case both equations satisfy 
the conditions (88). Therefore, the 

geometric place is the Z axis. 

 𝜃 = 𝜋 2 , we have two possibilities to 

satisfy the conditions (88), namely: 𝜁 = 0, 

as in case (1) or 𝜂 = 0. From this condition 

we have 

tan 
𝜔𝑟

𝑐
 =

𝜔𝑟
𝑐

1 −
𝜔2𝑟2

𝑐2

.                                                        (90) 

So, we have the geometric places are rings in 

the plane 𝑧 = 0 whose radiuses satisfying Eq. 

(90), these rings corresponding to the case 

𝜃 = 𝜋 2   and 𝜂 = 0. In all points over these 

rings the cogravitational field is zero. 

The Poynting vector is tangential in all points 

over these surfaces.  This can be seen from Eq. 

(81). This fact clarifies the conservation of 
energy within spheres of radiuses (85). 

The geometric places where the Poynting vector 

for the gravitodynamical field given by (78)-

(79) is null at any time are: 

 Z axis, called cogravitational axis because 

the ordinary gravitational field does not 

exist there. 

 Rings at the plane 𝑧 = 0 whose radiuses 
satisfy Eq. (90), called gravitational rings 

because there is not cogravitational field on 
them. 

 Spheres centered at the origin whose 

radiuses satisfy Eq. (89), called 

cogravitational spheres, because there is not 
gravitational field on them. 

 

Figure1. Poynting vector field distribution of the 
gravitodynamical field at a given time in the plane 

𝑥 = 0.6 

Let’s see the graph where is shown the 

distribution of the Poynting vector field in order 

to clarify the results obtained in this section. 
Due to the axial symmetry of the energy density 

                                                             
6
The graphics were performed in Mathematica™. 

The𝑧 axis is the ordinate and the 𝑦 axis is the 

abscissa, and we put in the program 𝑐 = 1 and 𝜔 = 1 

for simplicity. 
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and the energy-flux density, we can consider 

only the distribution in the plane𝑥 = 0. 

In Fig. 1 we can see the vertical cogravitational 

axis that matches with the 𝑧 axis, And we ca 

also see the cross-section of three spheres, 
which we will call G-sphere to the first one, K-

sphere to the second one, and G-sphere to the 

last one
7
, in an arbitrary instant. The total 

gravitodynamical energy conserves within G-
spheres due to theenergy-flux vector at the 

surface of this sphere has tangential component 

only.  

We can see also that energy transfers from these 

G-spheres to the gravitational ring (the equator 

of such spheres) and after a period defined by 

the function sin(2𝜔𝑡) in Eq. (81) the movement 
is reversed. Inside the first G-sphere the energy 

transfers from the cogravitational axis to the 

gravitational ringand having spent some time 
returns. The energy within the K-sphere is also 

conserved, we can see this because the Poynting 

vector is zero in every point of the K-sphere 
graphed. The energy is transferred from the 

surface of the K-sphere to the gravitational rings 

of the G-spheres. An analogue exchange of 

energy occurs between next G-spheres and K-
spheres. 

We want to emphasize the fact that the Poynting 

vector field reverses their direction after a time  

due to the function sin(2𝜔𝑡) present in Eq. (86). 

Let us see the cross-section of the Poynting 

vector field in the plane 𝑧 = 0 in Fig. 2. 

 

Figure2. Pointing vector field distribution in the 

plane  𝒛 = 𝟎, for a given instant of time8 

And at last, we can see the graphic of the cross-

section in the plane 𝑥 = 0  of the surfaces where 
the energy density is constant, the graphic of the 

                                                             
7 Called G-spheres because they have a gravitational 
ring in the equator, and K-spheres because they are 

spheres of co gravitational field.  
8𝑋axis is the ordinate and 𝑌 axis is the abscissa. 

first K-sphere; the graphic of the second G-

spheres. 

We need to note that these surfaces do not 

change in time in vacuum this means they do 
not deform nor displace when the time goes by. 

 

Figure3. Cross-section of the surfaces where the 

energy density is constant (dashed lines). The 

continuous lines represent the K-sphere and the G-
spheres. 

In Fig. 4 we obtain decreasing energy in the 

interval𝑅 ∈ [0, 7], where we have plotted the 

graphics of the total gravitodynamical energy 

𝐸𝑇𝐺  for four different time values, namely, 

𝑡 = 0, 𝜋 4 , 𝜋 2  and 3𝜋 4 . We have chosen 

these values due to the periodicity of the 

function cos 2𝜔𝑡 in the time-dependent term of 
this energy. Here, we can see how the energy is 

changing in different the time values given 

before. There are various points where the 

gravitodynamical energy is constant for 
different values of time. For example, we can 

see that in the point (2.75, 3.8) all the curves 

intersect, this means, at 𝑅 = 2.74 𝑐𝑚 we obtain 

the total gravitodynamical energy 𝐸𝑇𝐺 =

−3.8 × 10−3𝑒𝑟𝘨9.  

 

Figure4. This graph shows how the total 

gravitodynamical energy 𝐸𝑇𝐺  alternates as the 

distance varies for the different values of time time 

𝑡 = 0, 𝜋 4 , 𝜋 2  and 3𝜋 4   and for 𝑅 ∈ [0, 7]. 

                                                             
9 These values of distance and energy are only for 

reference, because we have to remind that we have 

chosen the values 𝜔 = 1 and  𝑐 = 1. 
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Now, we want to show both dependences in 3D 

graphics, and we are going to analyze them. Due 
to the periodicity of the term time-dependent we 

will fix them for  𝑡 ∈ [0, 2𝜋]. First, we have Fig. 

5(a) the interval  𝑅 ∈ [0, 1 ]. 

 

Figure5(a). Graph of the total gravitodynamical 

energy contained in the G- and K-spheres. 𝐸𝑇𝐺   for 

the intervals  𝑅 ∈ [0, 1 ] and 𝑡 ∈ [0, 2𝜋]. 

In the Fig. 5 (b) we show the total 

gravitodynamical energy in the interval𝑅 ∈
[0, 10]. 

 

Figure5(b).Total gravitodynamical energy in the 

interval  𝑅 ∈ [0, 10]. 

 

Figure6.Contour plot of the total gravitational 

energy in the intervals 𝑅 ∈ [0,1.25]and𝑡 ∈ [0, 2𝜋]. 
The cross-section where the total gravitodynamical 

energy is null, forms semi-ovoid. 

At last, we want to show the graphics of the 

cross-sections of both fields, in Fig. 7 we have 

the gravitational field in the plane  𝑧 = 0. In Fig. 

8 we have drawn cross-sections of the 

cogravitational field in the planes 𝑦 = 0 and 

𝑥 = 0 respectively.  

                                                                                                                                                                                                 

Figure7. Ring-like form of the gravitational field in 

the plane  𝑧 = 0. 

 

Figure8.Cogravitational field in the planes 𝑦 = 0 

and  𝑥 = 0, this field does not have components in 

the plane 𝑧 = 0. 

Convergent Solution (78) and (79) 

Represented as a Superposition of Two 

Divergent Solutions 

We can represent solutions (78) and (79) as a 

superposition of two waves spreading in 

opposite directions in each point, as the same 
way as Eq. (21). To do that only we need to do 

an algebraic transformation. 

We call  

𝐆𝑐 = 𝐆(→) + 𝐆 ←                                                        (91) 

Gravitational co nvergent solution. This 𝐆𝑐  is the 

superposition of the two waves 𝐆(→) and 

𝐆(←)spreading in opposite directions at every 

point. In a similar way, we call  

𝐊𝑐 = 𝐊(→) + 𝐊 ←                                                       (92) 

co gravitational convergent solution. These 

solutions converge in 𝑟 = 0 ⟺  𝛿 = (𝑛 +
1 2 )𝜋, where, 𝑛 = 0, ±1, ±2, ±3, … 
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Where in both cases we have  

𝐆(→) =
𝜉𝜔 sin𝜃

2𝑐𝑟2
 cos 

𝜔𝑟

𝑐
− 𝜔𝑡 +

𝜔𝑟

𝑐
sin  

𝜔𝑟

𝑐
− 𝜔𝑡  𝝓 ,                                                                                                                (93) 

𝐆(←) = −
𝜉𝜔 sin 𝜃

2𝑐𝑟2
 cos  

𝜔𝑟

𝑐
+ 𝜔𝑡 +

𝜔𝑟

𝑐
sin 

𝜔𝑟

𝑐
+ 𝜔𝑡  𝝓 ,                                                                                                            (94) 

𝐊(→) =
𝜉 cos 𝜃

𝑟3
 sin  

𝜔𝑟

𝑐
− 𝜔𝑡 −

𝜔𝑟

𝑐
cos 

𝜔𝑟

𝑐
− 𝜔𝑡  𝒓  

+
𝜉 sin 𝜃

2𝑟3
 −

𝜔𝑟

𝑐
cos  

𝜔𝑟

𝑐
− 𝜔𝑡 +  1 −

𝜔2𝑟2

𝑐2
 sin 

𝜔𝑟

𝑐
− 𝜔𝑡  𝜽 ,                                                                                                  (95) 

𝐊(←) =
𝜉 cos 𝜃

𝑟3
 sin  

𝜔𝑟

𝑐
+ 𝜔𝑡 −

𝜔𝑟

𝑐
cos 

𝜔𝑟

𝑐
+ 𝜔𝑡  𝒓  

+
𝜉 sin 𝜃

2𝑟3
 −

𝜔𝑟

𝑐
cos  

𝜔𝑟

𝑐
+ 𝜔𝑡 +  1 −

𝜔2𝑟2

𝑐2
 sin 

𝜔𝑟

𝑐
+ 𝜔𝑡  𝜽 .                                                                                                  (96) 

The solutions (93)-(96) are solutions of the free Jefimenko’s equations. 

It is also possible demonstrate the next equations 

𝐆(→) =
1

2
 −𝐆𝑑 + 𝐆𝑐  and 𝐆(←) =

1

2
 𝐆𝑑 + 𝐆𝑐                                                                                                               (97) 

and 

𝐊(→) =
1

2
 −𝐊𝑑 + 𝐊𝑐  and  𝐊(←) =

1

2
 𝐊𝑑 + 𝐊𝑐 ,                                                                                                         (98) 

where  𝐆𝑑  and  𝐊𝑑  are divergent solutions of the system (11)-(14): 

𝐆𝑑 =  𝜉  
𝜔𝜁𝑑

𝑐𝑟2
sin 𝜃 𝝓  sin 𝜔𝑡                                                                                                                                           (99) 

and 

𝐊𝑑 =  𝜉  
2𝜁𝑑

𝑟3
cos 𝜃 𝒓 + 𝜉  

𝜂𝑑

𝑟3
sin 𝜃 𝜽  cos 𝜔𝑡,                                                                                                         (100) 

where 

𝜁𝑑 = cos  
𝜔𝑟

𝑐
 +

𝜔𝑟

𝑐
sin 

𝜔𝑟

𝑐
  and  𝜂𝑑 = 𝜁𝑑 −

𝜔2𝑟2

𝑐2 sin  
𝜔𝑟

𝑐
 . 

We said before that  𝐆(→),𝐆(←) , 𝐊(→) and 𝐊(←) 

are solutions of the free Jefimenko’s equations 

for gravitation and they are divergent in 𝑟 = 0. 
And we can conclude this section emphasize the 

fact that this kind of gravitational waves of 

Jefimenko’s solutions allows interference 
phenomenon as a superposition of two 

gravitational waves spreading in opposite 

directions. 

CONCLUSIONS  

As we have seen in section II, Eq. (21) 

represents a function of two waves spreading in 

opposite direction, both in 𝒌 direction. Such 

waves are similar to electromagnetic waves, that 

is, 𝐆  and 𝐊 are transversal waves, perpendicular 

to the direction of propagation defined by the 

Pointing vector  𝐒. 

The superposition of the mentioned waves 

spreading one from the origin to infinity and the 
other one from the infinity to the origin 

produces stationary waves. Both waves have 

axial symmetry. So, we have obtained a free 
stationary gravitodynamical field, it is 

consequence of gravitational interference 

processes. 

In this gravitodynamical configuration surfaces 

(the dashed lines in Fig. 3) and points (in the 𝑧 

axis) exist, where the energy density is constant. 

Such surfaces and points are nodes of energy 
density waves. 

The cogravitational spheres obtained, can be 

containers of mass, because if we consider Eq. 
(4), any cogravitational field exerts a perpendicular 

force on any mass to the plane formed by the 

vectors 𝐯  and  𝑲, where 𝒗  is the velocity of the 

particle and we have already seen that the 
cogravitational field in these unusual formations 

is tangent in every point of such surfaces. That 

is why the particles contained inside these 
spheres cannot leave such co gravitational 

spheres.  The gravitational rings will take the 

particles of the gas contained in it and they will 
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turn them in a direction of rotation of such a 

field. 

From figure 4 we can see the points where the 

energy is constant, such points are those where 

the different curves are intersected and they 
represent the nodes of energy waves.  
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